

PROJECT OVERVIEW

A leading manufacturer and distributor of popular beverages partnered with WOG Group to implement a high-efficiency Wastewater Treatment Plant (WWTP) integrated with a Biogas Generation System.

THE PROJECT AIMED TO:

- Treat 350 m³/day of high-strength wastewater from production processes.
- Minimize environmental impact.
- Reduce operational costs.
- Support broader sustainability goals.

CLIENT OVERVIEW

The client is one of the largest beverage and food manufacturing & distribution companies in the Caribbean, representing globally recognized brands.

KEY SUSTAINABILITY INITIATIVES INCLUDED:

- Reducing water consumption.
- Optimizing energy usage.
- Minimizing carbon footprint.
- Investing in cutting-edge wastewater
 treatment technologies for regulatory
 compliance & sustainability enhancement.

CHALLENGES

1. HIGH ORGANIC LOAD IN WASTEWATER

- - Required efficient treatment to meet discharge standards.

2. STRINGENT ENVIRONMENTAL REGULATIONS

 Necessitated reducing pollutant levels to comply with environmental standards.

3. NEED FOR CARBON FOOTPRINT REDUCTION

 Aimed to integrate renewable energy solutions to reduce the carbon footprint and energy costs.

4. EFFICIENT ENERGY UTILIZATION

 Needed to minimize operational energy consumption by utilizing biogas generated during treatment.

SOLUTIONS IMPLEMENTED

1. ANAEROBIC DIGESTION WITH BIOGAS GENERATION

- Installed an Anaerobic Digester to treat high-strength organic wastewater.
- Produced 27,000 Nm³/day of biogas with 70% methane.
- Utilized 18,900 Nm³/day of methane as a renewable energy source.

2. PRE-TREATMENT USING CLARIFIERS & FLASH MIXERS

- Used clarifiers and flash mixers to remove suspended solids.
- Reduced the load on downstream units, improving overall treatment efficiency.

3. TERTIARY TREATMENT FOR POLISHING EFFLUENT

- Polished treated effluent through advanced tertiary treatment.
- Achieved pollutant levels compliant with stringent discharge standards.

4. BIOGAS UTILIZATION FOR ENERGY SAVINGS

- Captured and converted biogas into energy.
- Achieved electricity savings of 1800 kW/day.
- Reduced reliance on conventional energy sources.

RESULTS ACHIEVED

1. SIGNIFICANT REDUCTION IN POLLUTANT LEVELS

- COD reduced from 6000 ppm to < 100 ppm.
- BOD reduced from 2000 ppm to < 30 ppm.
- Suspended Solids (SS) reduced from 500 ppm to < 50 ppm.

2. BIOGAS GENERATION AND RENEWABLE ENERGY UTILIZATION

- 27,000 Nm³/day of biogas generated.
- 18,900 Nm³/day of methane production.
- 1800 kW/day energy savings achieved.

3. SIGNIFICANT CARBON FOOTPRINT REDUCTION

- Project contributed to a carbon footprint reduction of 1629 kg/day.

4. 72% ORGANIC LOAD REDUCTION

 System achieved 72% reduction in organic load, ensuring high-efficiency wastewater treatment.

IMPACT DELIVERED

1. COMPLIANCE WITH ENVIRONMENTAL REGULATIONS

Consistent achievement of stringent discharge standards.

2. SUSTAINABLE OPERATIONS AND CARBON REDUCTION

- Integrated biogas generation enhanced sustainability & lowered the carbon footprint.

3. COST SAVINGS THROUGH ENERGY EFFICIENCY

Substantial operational cost reductions through renewable energy utilization.

4. ENVIRONMENTAL STEWARDSHIP & LONG-TERM SUSTAINABILITY

 Reinforced commitment to environmental protection and long-term sustainability goals.

